
NASA-TM-II2244

Sorting for Particle Flow Simulation on the Connection
Machine

Leonardo Dagum I

Report RNR-90-O17, October 17, 1990

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)



Sorting for Particle Flow Simulation on the
Connection Machine

Leonardo Dagum 1

Abstract. This paper investigates the sorting requirements of a particle simu-

lation and analyzes the sorting algorithms currently in use on sequential, vector,

and data parallel implementations of particle flow simulations. Particle simulation

requires sorting N integers in the range [1, O(N)] and takes O(N) running time on

sequential or vector machines. The data parallel implementation of a particle sim-

ulation is shown to be non-optimal with running time O(N log N). Until recently,

there have been no optimal parallel integer sorting algorithms. This paper presents

an optimal deterministic algorithm for parallel sorting in a particle simulation. The

algorithm first identifies ordered subsets within the disordered set of particles, and

then merges these subsets in a novel fashion which takes O(1) time with N pro-

cessors and uses O(1) additional memory per processor. The algorithm is optimal

only when constrained to merging O(1) ordered subsets and loses optimality when

applied to sorting a fully disordered set,

1.1 Introduction

Of increasing interest to NASA and the fluid mechanics community in general has

been the development of accurate and efficient methods for treating problems in

rarefied flow. Renewed interest in the rarefied flow regime is a consequence of cur-

rent efforts to design aerospace vehicles to operate in the upper atmosphere where

rarefied flows are encountered. Problems in this regime are most commonly handled

through the method of direct particle simulation, and in particular through use of

the direct simulation Monte Carlo (DSMC) method (Bird (1976)). However, many

of the algorithms of the DSMC method are not suited for "single instruction-stream,

multiple data-stream" (SIMD) execution and therefore are incompatible with the

architectures of current supercomputers. Much effort has been spent in developing

new paxticle simulation algorithms more compatible with supercomputer architec-

tures, and this effort has lead to the development of the Stanford particle simulation

(SPS) method (Baganoff and McDonald (1990)). In addition to removing the data

dependencies which would inhibit SIMD execution, the SPS method reduces the

xThe author is an employee of Computer Sciences Corporation, Mail-Stop T045-1, NASA Ames
Research Center, Moffett Field, CA 94035. The work reported here was performed while in the
Department of Aeronautics and Astronautics at Stanford University. This research was supported
in part by the National Aeronautics and Space Administration (NASA) under grant NAGW-965
and grant NCA2-313, and through DARPA by Cooperative Agreement NCC2-387 between NASA
and the Universities Space Research Administration (USRA).



Chapter1. Sorting for Particle Flow Simulation on the Connection Machine

operation count per particle thereby significantly improving overall performance.

However, both the DSMC and the SPS methods require some amount of sorting

which, on the Connection Machine, has been implemented with a non-optimal al-

gorithm (Dagum (1989)). This paper investigates the sorting requirements of a

particle simulation and presents a parallel sorting algorithm explicitly for particle

simulation with optimal performance.

1.1.1 Why Sort?

The selection of collision candidates in a particle simulation requires identifying

particles occupying the same volume in physical space and from these selecting a

representative sample to collide. For this purpose, physical space is discretized by

a grid of cells and only particles occupying the same cell are possible candidates for

collision. Each cell is identified by a cell index and a particle is associated with a

single cell. In general, a sorting operation is required after the particles are moved

such that particles occupying the same cell can be easily accessed.

A fundamental difference between the DSMC method and the SPS method is

_ the rule used to select colliding particles in the simulation. The amount of

_orting required in the simulation is dependent on the selection rule, therefore it is

necessary to understand these differences. Baganoff and McDonald (1990) classify

selection rules according to the role given to the sample of candidate pairs taken

from a cell. In the SPS method the sample size is not specified by the selection

rule, therefore one has the freedom of using whatever algorithm is most natural for

sampling candidate pairs from a cell. Because of the greater freedom allowed in the

sampling of candidate pairs, this selection rule can be implemented with greater

ease on different computer architectures. For this reason it is termed the natural

sample size selection rule.

In the DSMC method, the sample size is explicitly specified for each cell and

therefore is coupled to the the selection rule. Consequently, there is very little free-

dom in the choice of algorithm for sampling candidate pairs from a cell. Typically

the particles must be fully sorted by order of their cell so that the correct number

of pairs can be sampled from each cell. Baganoff and McDonald (1990) refer to this

selection rule as the constrained probability selection rule because it ensures that

probabilities of selection do not exceed unity for any sampled pair.

1.1.2 About This Paper

Dagum (1989) describes a data parallel implementation of the SPS method where

each particle in the simulation is mapped to a single processing element in the

architecture. This implementation uses a parallel radix sorting algorithm to order



1.2. Sorting for Particle Simulations on Sequential or Vector Machines 3

the particles on every time step. The primary purpose of this paper is to present

an alternative optimal parallel sorting algorithm which can be used either in the

context of a particle simulation as described in Dagum (1989) or as a parallel merge

algorithm when the number of lists to be merged is O(1).

A parallel algorithm is optimal if the product of its processor complexity and

its parallel time complexity is lower bounded by the minimum sequential time to

solve the problem. In other words, the processor × time complexity is the same

as the minimum sequential complexity of an algorithm. The sequential complexity

of general sorting, i.e., where the range of the keys is unbounded, is known to be

O(N log N) (cf. Knuth (1973)). However, when the range of the keys is finite, sort-

ing does not have to be based on comparison of keys and the sequential complexity

then is O(N). This class of sorting is often referred to as integer sorting (cf. Aho

et al.) because the keys either are, or can be mapped to, integers in the range

[1, O(N)].

In a particle simulation there are a finite number of cells for particles to occupy.

Therefore only integer sorting is required and the optimal running time of a par-

ticle simulation is O(N) where N is the number of particles. Section 2 of this

paper describes the sequential and vector integer sorting algorithms used in both

the DSMC and the SPS methods. Section 3 describes the parallel radix sorting

algorithm used in the data parallel particle simulation and shows this algorithm is

not optimal for integer sorting. Section 4 presents a new, merge based data parallel

sorting algorithm explicitly for particle simulation which has optimal performance.

1.2 Sorting for Particle Simulations on
Sequential or Vector Machines

The first sort which will be discussed here is the bucket sort (cf. Aho, Hopcrofl,

and Ullman (1974), or see distribution counting, Knuth (1973)) used in the DSMC

method. In the DSMC method the particle indices are sorted by order of the

particle's cell index (i.e. the index identifying the cell that a particle occupies).

The sorted list is stored in a separate array called the cross-reference array (Bird

(1976)). To identify the particles in a cell it is only necessary to know the cell

density (i.e. the number of particles in the cell) and the first index in the cross-

reference array of the particles in the cell. The latter will be referred to as the

starting indez of a cell.

The bucket sort employs a separate array with an dement (or "bucket") for every

possible key value. In one pass through the disordered set of keys, the number of



4 ChapterI. SortingforParticleFlowSimulationontheConnectionMachine

occurrencesofeachkeyissummedand stored in the key's bucket. Next, in a pass

through the buckets, the running sum of the values in the buckets is computed and

stored as the starting indices for the keys. Finally, in another pass through the

disordered set of keys, the occurrence of each key is added to the starting index

for the key to create the rank of that key. By moving each key to the position

given by its rank, the set becomes ordered. In a particle simulation, the first step

above corresponds to computing the cell density and the second step corresponds

to computing the starting index for each cell.

The bucket sort cannot be fully vectorized although Boyd (1991) shows how it can

be partially vectorized. Figure 1.1 is a schematic of the sorting process as performed

by Boyd and will be described here in the context of s particle simulation. The

unvectorizable elements of this algorithm are the calculation of the cell densities and

the counting of previous cell occurrences in the table of particles. The term "cell

occurrence" is used to mean, for a particular particle, how many other particles

before it in the table occupy the same cell. In other words it is an enumeration

of the particles in a cell. If this enumeration is available in a separate array then

the last step of the algorithm, which is the creation of a rank for each particle,

can be vectorized. The algorithm proceeds as follows. First, in one pass through

the table of particles, the particles in each cell are enumerated and the final count

for each cell becomes the cell density. In the figure, the state of the cell density

array is shown for every step of the enumeration. The next step in the algorithm

involves computing an array of starting indices for each cell simply by carrying out

the running sum of the cell densities. Finally, the rank of each particle is computed

by adding a particle's enumeration to the starting index for its cell. The first step

of this algorithm cannot be vectorized because it is impossible to ensure that two

particles in a vector do not also occupy the same cell. The second step cannot be

vectorized because the running sum calculation is inherently data dependent.

In the SPS method the number of collision candidate pairs is left unspecified.

The number of pairs sampled from a cell will depend on the implementation; this

number is used by the selection rule to adjust the probability of selection accord-

ingly. Typically one creates n/2 pairs in a cell where n is the cell density. Therefore

on a sequential machine there is no need to order the particles before creating pairs,

one can simply go directly to creating a known number of pairs of collision candi-

dates to be used in the collision routine. This is accomplished by going through the

table of particles once and keeping track of every occurrence of a cell in a separate

array. The separate array is a mapping in memory of the cells in physical space.

It is referred to as the space map (McDonald (1990)) and is analogous to the array

of buckets used in the bucket sort. However, unlike the buckets, the space map is



1.2.SortingforParticleSimulationsonSequentialorVectorMachines

PARTIO.E CELL

_,I

3 2

4 0

5 I

6 I

7 2

INITIAL STA_E
(I)

Figure 1.1

CELL

Iol
I'1
I_1

CELL DENSITY

-I'I--I__+-_ I
, t-fl--fH, I, H ' I _t_

t I _I' t-t+t-t+t,I, I
' I' I" I, I_ I_ IE_T_

INDEX

',NUt'IERATICINCIFPA_TICLE$ ARRAY
(IO (IV)

SchemAtic of steps in the DSMC sort algorithm

RANK PARTICLE

N..l"
! 2

2 4

3 !

4 5

5 G

6 3

7 7

G_CG_,REFEREHCE
F.qRAY

(V)

used to store either the index of a particle or a zero.

Figure 1.2 is a schematic of the collision candidate pairing algorithm used in the

vectorized SPS method. One performs a single pass through the table of particles,

checking the appropriate element in the space map for another unpaired particle

in the same cell. If this is the case one creates a pair and zeroes the element in

the space map. Otherwise the particle's index is stored in the space map as an

unpaired particle. In figure 1.2 the state of the space map is shown for each step in

the pairing process so it is possible to see how consideration of each particle in the

table changes the state of the space map. Paired particle indices are stored at the

time they are created in two arrays which are later used in the collision routine.

In the strictest sense the collision candidate pairing algorithm cannot be fully

vectorised because it is impossible to ensure that two or more particles being pro-

cessed in a vector do not occupy the same cell. Such a situation has two possible

outcomes depending on the current state of the space map. If at the time the

vector is being processed there a_e no unpaired particles in the cell such that the

corresponding entry in the space map is zero, then only one of these particles will

have their index written into the space map and the other one will essentially be

ignored as a candidate collision partner. This is not an error since the number of

pairs created in a cell is counted and used in computing the probability of selection.

However, if at the time the vector is processed there does exist an unpaired particle

in the cell with its index stored in the space map, then this particle will get paired

with both particles in the vector. This can lead to an implementation-dependent

outcome for the collision of these particles. The collisions are carried out in a vec-

torised fashion, therefore if the same particle collides twice in a vector the outcome



Chapter I. Sorting for Particle Flow Simulation on the Connection Machine

PARTIC].E CELL

! I !

2 O|

4

6

"7

INITIAL STATE
(I)

Figure 1.2

_PK_ MAP

INITLM. VN,.UE
CELL /

2 O:_'-'P 31-

CREATIONCF CANDIDATEPAIRS
(11)

Schemstie of collision candidate pairing algorithm used in the vectorised Stanford
particle sinmlstion method. The end result is s list of csndidste pairs of colliding
particles.

is unpredictable and very likely not to conserve momentum and energy.

As indicated by McDonald (1990), the probability of introducing an error through

the data dependency described above is very low. Not only is it necessary for two

particles from the same cell to have been in the same vector during the pairing

process, it is also necessary for the two pairs to be accepted for collision before an

error is introduced. Furthermore, since the effect of this error is small there is an

acceptable tradeoff in accuracy for performance.

It is possible in some degree to quantify the heuristic argument given above by

deriving the probability of two or more particles in a vector occupying the same

cell. To do this we must make the following assumptions:

(i) the cell populations are all identical.

(ii) particle indices are independent of the particle locations, therefore the indices

can be thought of as randomly distributed amongst the particles.

The second of these assumptions is generally true, however the first is true only in

implementations of the DSMC method where cell volumes have been chosen to give

a uniform cell population throughout the flow domain. For the cubic cells of unit

width employed with the SPS method it is not reasonable to expect uniform cell

populations, nonetheless one can proceed assuming (i) is true and then see how the

result is affected when (i) does not hold.



1.2. Sorting for Particle Simulations on Sequential or Vector Machines

Given the two assumptions above, one can find for any particle in the flow field

the probability p that it occupies a particular cell cj (j : 1,..., Ctot) as

p = 1/C,o, (1.1)

where (;'tot is the total number of cells in the flow field. Conversely, the probability

q that this particle no_ occupy a particular cell ci is given by

q = 1 - 1/C,o,. (1.2)

Now consider a group of N_ec particles, where N_ec is the number of elements in a

vector (64 for the Cray 2). The probability of k particles in the group occupying

the same cell is given by the binomial distribution

f(k) = (N_'c)pkq N''c-' (1.3)

where (N_,c) are the binomial coefficients defined as

(N_,c) N, (1.4)- k (N.c -

The distribution is normalized so z-,k=1 f(k) = 1. To determine P, the probability

of two or more particles in a vector occupying the same cell, one must evaluate

N_ec

P = 1(k)
k=2

= 1- f(0)-- l(1)

= 1 -- qN.,c-l(q + N,_ecp). (1.5)

Substituting q : 1 - p gives

P : 1 - (1 - p)H"°-l(1 + (N,,e - 1)p). (1.6)

Typically the number of cells Ctot is large so p << 1 and

(1 -p)N...-I _ 1 -- (N_,c - 1)p (1.7)



Chapter 1. Sorting for Particle Flow Simulation on the Connection Machine

and equation 1.6 simplifies to

P (N.o - 1)2p2
(N.o - 1)2

C ot (1.8)

In a moderate size simulation one may employ 10e particles and about 5 × 104

cells. The probability of finding two particles in the same cell in a vector of 64

particles is then P : 1.6 × 10 -s. One pass through the table of particles requires

about 16000 vectors, therefore over 1000 time steps one would employ 1.6 × 107

vectors and one could expect to find 1.6 × 107 × P -_ 25 vectors with two or more

particles occupying the same cell.

The analysis above assumes that all cells have the same population therefore all

particles are equally likely to occupy a particular cell. When the cell populations

are not uniform, randomly chosen particles are more likely to be occupying the

cells with greater population. Conversely, the chosen particles are less likely to be

occupying cells with less population. Therefore one can remove from consideration

those cells with less population and employ the result in equation 1.8 but with Ctot

adjusted to reflect the greater weight given to the more populated cells. In the

typical simulation of the previous paragraph there were an average of 20 particles

per cell. In the actual flow one would probably find some cells with no particles

and some with 150 or more. As a worst case scenario, assume an average of 100

particles per cell is significant, therefore with 10e particles there are C_ot : 10 8

significant cells in the flow. Now over 1000 time steps there are 625 vectors which

have two or more particles occupying the same cell. As a worst case this is still an

insignificant error considering that there are a million particles in the flow and the

calculation has been carried out over a thousand time steps.

It is of interest now to investigate what effect there would be in the DSMC

method if the sorting algorithm there ignored the problem of two or more particles

in a vector occupying the same cell. For simplicity let us assume that in sorting the

particles there is exactly one vector with two particles occupying the same cell, cj.

First consider the effect on the calculation of the cell density. The cell density is

the final result of enumerating the occurrences of a cell in the table of particles. If

two particles in a vector occupy the same cell, then in processing that vector there

will be two copies of the current cell count, each of which will be incremented by

one. As a result the computed cell density for cell cj will be less than the actual

value by one. In the next step one computes the running sum of the cell densities



1.2. SortingforParticleSimulationsonSequentialorVectorMachines

to getthestartingindexforeachcell.Theerrorin thecelldensityofcj propogates

to the starting indices of all cells indexed above cj, and all those starting indices

axe less than the actual value by one.

Now consider the effect on the enumeration of the cell occurrences. The two

particles in the same vector occupying cell cj both receive the same enumera-

tion. Therefore those two particles receive an equal rank. Furthermore, since

the computed starting indices are less than the actual values by one, the ranks

computed for any particles occupying cells indexed above cj will be off by one.

The cross-reference array is created by moving the particle indices to their sorted

positions. In the cross-reference array one array element, CRy, will receive two

different values from the same vector but only one will be written. All array el-

ements above CP_ (i.e. elements CRy+h,/c = 1, 2,..., N - i - 1) will receive the

particle index which should have gone to the next array element (i.e. to element

CR_+k+x, k = 1, 2,..., N - i - 1). The last array element, CRN, will be left un-

written to. Nonetheless, since the cross-reference array is accessed by the starting

indices, and since the starting indices for particles ranked above CP_ are off by

one, the cross-reference array still will provide the correct particle indices. In other

words, the cross-reference array still will correctly identify the particles occupying

the same cell and the only error will be in incorrectly computing the cell density

for cell cj. The argument above can be extended to cases where more than two

particles in the same vector occupy the same cell or more than one vector has mul-

tiple particles which occupy the same cell. In all cases the cross-reference array will

provide the correct particle indices and the only error will be in the calculation of

the cell density. In conclusion, the partially vectorized bucket sorting algorithm de-

scribed by Boyd (1991) could be fully veetorized with the introduction of negligible

error.

On the Connection Machine it is not practical to employ either the DSMC sorting

algorithm or the SPS candidate pairingalgorithm.As discussedabove, some error

isintroduced iftwo or more particlesin a vector alsooccupy the same cell,and

equation 1.8givesthe probabilityof such an event occurring.On the Connection

Machine the "vectorlength" iseffectivelyas great as the activevirtualprocessor

(VP) set. Since each virtualprocessorrepresentsone particle,on the Connection

Machine N¢.c = N and one willalways find two or more particlesin a "vector"

occupying the same cell.This isa situationwhere the relativelysmall vectorlength

ofthe Cray 2 allowswhat isin the strictestsensea scalaralgorithm to be carried

out in a SIMD fashion. One could emulate a smallervectorlength,N_ec, on the

Connection Machine by loopingthrough allthe processorsin the VP set with only

N_.c processorsactiveat a time. However, the poor performance ofindividualpro-



10 Chapter 1. Sorting for Particle Flow Simulation on the Connection Machine

cessors makes such a process very costly, and simply from a load balancing point

of view it would be very inefficient regardless of the speed of individual processors.

Consequently, on the Connection Machine one can virtually rule out as unfeasible

any algorithm which requires almost scalar behavior over a large data set. Fortu-

nately, alternative algorithms can be used and these are the topic of the remainder

of this paper.

1.3 Radix Sort

The Connection Machine instructionset(PARIS) includesan instructionforfinding

the rank foreach elementina disorderedsetofdata (seeThinking Machines (1989)).

This isthe CH.xank instructionwhich, in version5.x of the Connection Machine

software,issimply a radix sortingalgorithm writtenin microcode and optimized

forperformance. Hillisand Steele(1986)describethisalgorithm forthe Connection

Machine. SortingN elements with a maximum value ofCtot (the greatestvalue of

a cellindex in the currentcontext)requireslogCtotpassesthrough the N elements

ofthe data set.Each pass considersa singlebitofthe sortkey (thecellindex inthis

case)beginning with the leastsignificantbitand proceedingto the most significant

bit. The elements with a zero bit are enumerated first,and the elements with a

one bit are enumerated above these.Therefore ifthere are c elements with a zero

bitthey get assigned distinctintegersYk rangingfrom 1 to c.The remaining N - c

elements with a one bit then get assigned distinctintegersYk ranging from c -fI to

N. The valuesYk are then used to permute the elements such that allthe elements

with a zero bit precede the elements with a one bit. By proceeding through the

log Ctotbitsofthe sort key the setgets ordered.

Figure 1.3iss schematic forthisalgorithm. Beginning with the same disordered

data set of figures1.1 and 1.2,two pairs of enumerations are carriedout to sort

the set. In thisexample the maximum key valueis 2,thereforeonly two bitsare

required to representallthe key values. The firstpair of enumerations is used

to re-order the particleindicesbased on the value of the leastsignificantbit in

the cellindex. The new order isshown in the figureand islabelled"rank[l]"to

indicateitisthe ranking afterexamining the firstbit ofthe key. The second pair

ofenumerations uses the rank[l]valuesin re--orderingthe indicesand thus arrives

at the rank[2]resultwhich here isthe finalresultsincethere are only two bitsin

the key.

On the Connection Machine each re-orderingof the data set requiresa general

routercommunications event in the form of a CH_send (thiscorresponds to a con-



1.3. Radix Sort 11

PARTICLE CELL

__/_L_
I I (01

2 0 (00

5 ! (Oil

6 I (011

7 2 (10:

INITIAL STATE

(binary)

Figure 1.3

(I)

I 2]o0

2 3110

3 4100

_-1, ,o
S I101

6 5JOl

7 6101

FIRST ENUMERATION

(11}

!2 4OO

' 3 I Ol

5 6 nl

6 3 I0

i_ 7,0

SECOND ENUrlERATION

(lid

Schematic of radix sort algorithm for maximum key size of two bits.

current write in a paxallel random access memory (PRAM) model of computation),

therefore for the radix sort, as presented, there must be two enumerations and one

"send" per bit of the key. This ratio of enumerations to sends can be changed

simply by examining more than one bit before re-ordering. In other words, one

can look at two bits of the key and caxry out four distinct enumerations before

re--ordering, or one can look at three bits and caxry out eight enumerations before

re--ordering and so forth. In general 2J enumerations axe required to re-order j

bits. Therefore for every j bits in the key there will be 2 j enumerations and one

send. On the Connection Machine enumerations axe about 14 times faster than

sends and the cost of the radix sort is proportional to (2J + 14)/j. This function is

minimized for j = 3, in other words re-ordering 3 bits in the key at a time. It is

interesting and perhaps surprising that the CM.xank instruction uses j = 2 and it

is possible to write a faster ranking routine in PARIS by using j = 3. Finally, it is

worth noting that bucket sorting can be thought of as a special case of a radix sort

which lets j be the maximum number of bits in the key and, because the range of

the key is known precisely, allows the 2 j enumerations to be performed in a single

pass through the data set.

A final concern for the sorting algorithm is to maintain statistical independence

between samples of collision candidate pairs taken from a cell oyez succeeding time

steps. As is described in Dagum (1989), collision candidate pairs axe identified on

an even/odd basis, therefore the sorting algorithm must allow the order of paxticles

within a cell to change if statistical independence of the sample of pairs is to be

maintained. With the radix sorting algorithm a simple mechanism for accomplish-



12 Chapter I. Sorting for Particle Flow Simulation on the Connection Machine

ing this is to concatenate a random sequence of bits to the least significant bit of the

key, and then sort on this expanded key. A fixed number of bits are concatenated

but their values are random, therefore sorting on the expanded key will restore the

order of particles between cells while changing the relative ordering within cells.

Unfortunately, expanding the key in this manner introduces additional bits to sort

and there is a corresponding penalty in performance.

Assuming the "scan model" of computation (Blelloch (1987)) for the Connection

Machine (that is, the Exclusive Read Exclusive Write (EREW) model but including

scan operations as unit-time primitives) the time complexity, T, for this algorithm

using N processors is O(log C_ot) where C_o t = 2kCtot is the size of the expanded

key when k bits are concatenated to the cell index. The processor bound, P, is

O(N) and the algorithm has a performance bound of PT = O(Nlog C_ot). If

this sort algorithm is used in a particle simulation the computational time will

scale linearly with the number of particles only if the total number of cells is held

fixed. In practice, one tends to design a simulation with a number of cells which

is proportional to the number of particles to be used, so Ctot = O(N). Therefore,

this performance bound is nonlinear. The parallel radix sort is not optimal for

integer sorting and is not recommended for a particle simulation other than for its

simplicity and robustness.

1.4 Sorting by Merging Ordered Subsets

This section describes a very fast parallel ranking algorithm most suited for a two

dimensional particle simulation. The algorithm proceeds by identifying ordered

subsets in the full set of particles. The bulk of the work involves the merging of

these ordered subsets into a single ordered set. The algorithm has a performance

bound of O(N) therefore it is optimal for sorting in a particle simulation.

1.4.1 Two Fundamental Observations

There are two fundamental observationswhich can be made about the dynamics of

a particlesimulationand which can be used todesignan efficientranking algorithm

for thisproblem.

(1) On every time step the particlesbegin and end in an ordered state. The

disorderingof the particlesoccurs through theirmotion from one cellto another.

Furthermore, the nature of thismotion issuch that on one time step only about a

thirdofthe particleswillchange cells,thereforethe setisnevergreatlyout oforder.

In fact itispreciselyfor thisreason that thereisstatisticaldependence between



1.4. Sorting by Merging Ordered Subsets 13

./\. y

B

l

B

I

m

m

Figure 1.4

The maximum radius of motion over one time step is to s very high probability less
than two cell widths.

even/odd pairings in succeeding time steps unless an effort is made to enhance the

disorder (as discussed in the previous section).

(2) The motion of the particles is such that to a very high probability if a par-

ticle moves out of its current cell it will move only into one of its two immediate

neighboring cells in the direction of motion, that is, particles do not move more

than two cell widths per time step (see figure 1.4).

1.4.2 The Merged Ordered Subsets Sorting Algorithm

The merged ordered subsets sorting algorithm proceeds in the following manner.

Making use of the first observation, at the beginning of the time step the particles

are ordered and every processor is storing a value for its particle's current cell

index. The particles then go through their motion after which a new value for the

cell index must be computed. Both the old and the new values are stored, and now

use is made of the second observation. It is convenient at this point to map the cell

index into two dimensions and designate the pre-motion values by i, j and post-

motion values by i', f. Referring to figure 1.4 and assuming the second observation

holds true, then it is obvious that a particle beginning in cell i, j has at most 25

different and mutually exclusive possibilities for its new cell location i',j I. (In three

dimensions there are at most 125 mutually exclusive possibilities.) Conversely, if at

the end of its motion a particle is occupying cell i_,f, there ate at most 25 mutually

exclusive possibilities for its previous cell position i, j. Therefore one can divide

the set of particles into 25 distinct and ordered subsets based on the 25 distinct

possibilities for a previous cell location. In other words, because a particle in cell

i_,j _ has 25 mutually exclusive possibilities for its previous cell location i, j, and

because the particles were ordered in their previous cells, it follows that the order



14 ChapterI. SortingforParticleFlowSimulationonthe Connection Machine

must be preserved in 25 mutually exclusive subsets. The problem thus has been

reduced to one of identifying these 25 ordered subsets and merging them into just

one set.

Identifying each subset is accomplished by simply comparing the previous cell

position to the current one. Also at this time it is convenient to count the number

of paxticles in each of the subsets. This is useful later for optimizing the merging

step since often there are less than 25 active sources in a time step.

To merge the subsets it is necessary to identify the lowest numbered processor

for every cell in each subset, and then enumerate in each subset the processors

representing a cell (see figure 1.5). A one dimensional grid, referred to as the

"merging grid" and distinct from the physical grid of the simulation, is created with

size great enough to contain an element for all the cells in the non-zero subsets.

Therefore, if there are Cto¢ cells in the simulation and amongst all the cells N,

subsets are identified as active sources for the particles, then the merging grid must

have at least N, Cto¢ elements. Note that N, is usually less than 25 and once steady

state has been reached it almost always is equal to 9. In other words, active sources

usually include just the cell itself and its 8 immediate neighbors. Since Ctot is

usually a power of 2, and since VP sets are restricted to powers of two, the greatest

advantage occurs when N, is 16 or less. If N, is greater than 16 then the merging

grid must have size 32Ctot, but if N, is 16 or less, then the merging grid will have

size 16Ctot. Since the merging grid then is half the maximum size, any operations

performed with the processors of this merging grid will require about half the time

required in the larger sized grid.

The primary task for the merging grid is to compute the "global ending index"

for every active cell in each active subset. This is just the greatest rank for the

particles in a particular cell and subset. For this purpose the CM_send_with_add

instruction is used to determine the number density for every cell in each subset,

then the CM__canjith_add instruction is used to create a running sum of the

number density which is then the global ending index. Therefore the merging grid

now stores the greatest rank in the merged list for the particles in the cell it handles.

The psxticles in each subset can be ranked by subtracting their enumeration in their

cell and subset from the global ending index supplied by the merging grid.

The grid result is obtained by the particle processors (i.e. the processors repre-

senting the particles) through the use of the ¢M-get instruction. In order to mini-

mize router contention it is necessary to minimize the number of particle processors

active for this step. There ate at most NoCtot global ending indices, therefore at

most N, Ctot particle processors need to get a global ending index from the merging

grid. That is, only one particle processor for each cell and subset needs to get a



1.4. Sorting by Merging Ordered Subsets 15

value from the merging grid. This value can then be copied across the rest of the

particle processors in the cell and subset using the CM_scan_with-copy instruction.

The lowest numbered processor for every cell in each subset was identified earlier

in the algorithm and is used for this purpose.

Figure 1.5 is a schematic for the patterns of communication. Steps in the algo-

rithm proceed from left to right across the page. In the first step the Na active

subsets axe identified and the particles in each subset are enumerated with the enu-

meration re-starting at every cell. This requires N, distinct pairs of scan operations,

a pair for each set. The first scan is necessary to identify cell boundaries in a set

and the second scan enumerates the particles in each cell. The next step of the al-

gorithm requires all processors to send to the merging grid to create the cell number

density. The global ending index is then created using a single CH_scan_with_add.

Next, one processor in every cell in every subset gets its global ending index from

the merging grid. This is depicted in the figure by an arrow with heads on both

ends to emphasize that this operation requires communication in both directions.

Finally, this value is copied across the processors in the cell in each subset by using

N, distinct CM_scan_ith..copy operations. Now the processors can compute their

rank simply by subtracting their enumeration within the cell (step 1 of figure 1.5)

from the global ending index computed in the merging grid.

1.4.3 Maintaining Statistical Independence

It was claimed above that maintaining statistical independence of pairings between

time steps is a concern of the simulation. In using the radix sort it was necessary

to concatenate random bits to the end of the key and order the particles on this

expanded key. The merged ordered subsets algorithm maintains elements of ran-

domization in two ways. The first of these comes about from the manner in which

the Nj subsets are mapped to the merging grid; the second is a result of employ-

ing the merging grid to compute the global ending index as opposed to the global

starting index for a cell and subset. It is shown in this section that these mech-

anisms for randomization are not sufficient and it is necessary to further enhance

the randomization.

It is worthwhile at this point to analyze the requirements of statistical indepen-

dence. More specifically, we would like to be able to answer the question "how

many identical pairs can one expect between two successive time steps if at each

time step the choice of candidate collision pairs is made independent of the previ-

ous time step?" This would allow us to gauge quantitatively whether a particular

algorithm maintains statistical independence or not. For this purpose, consider

an arbitrary cell and let n be the number of particles within it. One can create



16 Chapter1. SortingforParticleFlowSimulationontheConnectionMachine

subset !

SIEP I STEP2 STEP3 S_P4 S'I'EP5

Figure 1.5

Schematic of the communications pattern in the merged ordered sets sorting

algorithm.

N = (_) different pairs from these paxticles. In a simulation one actually creates

only/¢ pairs where typically/¢ = n/2. Cleaxly there axe (_) different ways to choose

k pairs from N. The probability of making any particular selection must be (_) -x.

Now consider the probability that in making two selections no two pairs axe found

common. Since the first selection takes k pairs out of the pool of available combi-

nations, in the second selection only N - k pairs axe available. So there axe (N_h)

ways of choosing k pairs without using any of the same pairs chosen in the previous

selection. Therefore the probability that in the second selection there axe no pairs

from the first selection must be

P(0)- (_r_-k) (1.9)

Now consider the probability that in making two selections exactly one pair is

common in both. The first selection takes/V-(k- 1) pairs out of the pool, and there

axe (_) ways of choosing the one common pair from the k selected fixst. Therefore

there axe (N-(_-,))(_) ways of choosing /¢ pairs in the second selection with one

pair common to the first selection. The probability that the second selection has

one pair common to the first must then be



1.4. SortingbyMergingOrderedSubsets 17

P(1) - (2) (1.10)

This can be generalized to a probability distribution for finding i common pairs in
two selections as

P(i)- (N) i : 0, 1,2,...,k. (1.11)

This series is known as the hypergeometric series and its mean is given by (cf.

Guttman, Wilks and Hunter)

k2

: (1.12)

Substituting our values for k and N in terms of the cell density n, we find for large n

the mean or expected value of the distribution goes to 1/2. This can be interpreted

to mean that if one were to count, over samples taken from many cells with large

cell densities, the number of pairs common over two time steps, the average value

would be 1/2 if the samples were selected independently.

Now consider the merged ordered subsets algorithm and how randomization is

introduced there. There are two immediately available mechanisms for randomiza-

tion. The first is to use a random permutation of N, for mapping the N, subsets

to the merging grid. This is not sufficient since the order of the particles is still

preserved within each subset. The second is to reverse the order of enumeration

of the particles in each cell and subset by using the global ending index in com-

puting the rank. This also is insufficient since it is ineffective when the subset cell

density is even. Recall that the purpose is to produce a different pairing of those

particles which remain in a cell between subsequent time steps. Pairs are created

by matching the even-addressed particles with the odd-addressed ones, therefore

reversing the enumeration changes the pairing only when the number of particles

in the enumeration is odd. These points are discussed more extensively in Dsgum

(1990), the significant outcome is that additional randomization is required from

the algorithm before it can be used in a particle simulation.

Additional randomization must be applied at two scales. There must be random-

ization in the order of the particles in each subset, and there must be randomization

of the ordering across the subsets within a cell. The opportunity for accomplishing

the first of these exists in the enumeration stage of the algorithm. The order of

enumeration within each subset can be shuffled in s deterministic fashion at very

little cost. The shuffling is performed by re-numbering the processors in a cell after



18 Chapter I. Sorting for Particle Flow Simulation on the Connection Machine

the regular enumeration has been performed. Two shuffling algorithms are em-

ployed because each shuffling algorithm is deterministic and two applications of the

same shuffle to a data set produces no change in the relative ordering. Alternating

between two different shuffling algorithms ensures there is no correlation between

samples taken two time steps apart. The diffusion and convection of the particles

through the flow field is such that, for the time steps used in most practical ap-

plications, there is no correlation between the particles in a cell three time steps

apart.

Shuffling requires the particle processors to know the subset cell density. This is

obtained through the use of the CM__can_with_¢opy instruction. Figure 1.6 has a

schematic for each of the two shuffling algorithms. In the first shuffling algorithm,

the processors which previously had an even number are re-numbered continuously

from 1 to n/2 and the processors which previously had an odd number are re-

numbered continuously from n/2 ÷ 1 to n. On the next time step when these

processors are paired as even-with--odd the renumbering will effectively make pairs

as even-with-even and odd-with-odd in termsof the addresses in the previous time

step. In the second shuffling algorithm, the numbering of the odd processors is left

intact but that of the even processors is reversed. Therefore if ne_ is the number

of even processors, then their numbering is changed from from 2, 4, 6,..., 2ne_ to

2ne_,2ne_ -2,...,2. On the next time step when these processors are paired

as even-with-odd the renumbering will effectively make pairs as first-with-last,

second-with-secondlast, and so on, in terms of the addresses in the previous time

step. The reason for two shuffling algorithms should now be clear. If either of

the two shuffles are applied twice in sequence, the resulting pairing is unchanged.

However by alternating between the two shuffles it is possible to guarantee different

pairings for at least two succeeding time steps. By the third time step most of the

particles in a cell have left and it is not necessary to worry about correlations over

more than two time steps.

Randomization of the order across subsets must now be addressed. This random-

ization is absolutely necessary because the particles within each subset are highly

correlated amongst themselves. Recall that each subset is identified on the basis

of the direction of motion of the particles. For example, one subset will include all

the particles which arrived at a new cell from the neighboring cell directly below.

Therefore all those particles will tend to have velocities in the upward direction

regardless of how they are rearranged amongst themselves. Some correlation like

this will exist in each of the subsets. To eliminate such correlations it is necessary

to mix the order across subsets.

Of the two shuffles described above, only the second one will allow mixing across



1.4.SortingbyMergingOrderedSubsets 19

P,q_I'IOA_ RE- HEY
lUlEER

b 2 W

c 3 4

d 4 2

SitUFFLE ! SttUFFLE 2

Figure 1.8
Two deterministic shuffling algorithms. These shuffles are applied on alternat/n g
time steps to the particles in each cell in order to ensure suflleient mixing.

PNtTX].EOJRRFJ_liE- H£¥
_ OIOER

subsets. The extension of this algorithm to shuffling across a complete cell is

straightforward; he, becomes the number of even processors for the cell, as oI>-

posed to the number of even processors in a subset for the cell. The new num-

bering will result in pairings between particles of different subsets in the cell. In a

similar fashion the algorithm can be applied separately to the first and last half of

the processors for the cell. By alternating between shuffling over the complete cell

and shuffling the first and last halves separately, the pairing of collision candidates

is made random. The effectiveness of these shuffling algorithms is ascertained in

Dagum (1990) through calculations for thermal relaxation in a heat bath and for

shock wave profiles. Non-random samples of candidate collision pairs lead to in-

correct collision frequencies in the flow and these become immediately evident in

the results of such calculations.

1.4.4 When Assumptions Fall

The algorithm has been presented from a physical perspective and in the context

of a generic cell in a generic time step. Two observations of the dynamics of the

simulation were necessary for the algorithm to be valid. It is necessary now to

discuss the situations where these observations do not hold true and the algorithm
cannot be used.

The obvious situation for which the sort will fail occurs when particles move

over more than two cells in one time step. The assumption that particles do not

move more than two cell widths in one time step is true to a very high probability,

however given the statistical nature of the simulation it is impossible to rule out

the possibility of a particle not holding to this assumption. It is a simple matter to

trap these instances before carrying out the sort thus allowing the opportunity to

employ a fully deterministic algorithm (e.g. the radix sort) instead.

A more common situation is for the first observation to fail. The first observation



2O Chapter1. SortingforParticleFlowSimulationontheConnectionMachine

claimedthat theparticlesgo from an ordered to a disordered state through their

motion from one cell to another. This is not true at the upstream boundary of

the wind tunnel where new particles must be introduced to maintain a uniform

free stream. However the introduction of new particles can be delayed an arbitrary

number of time steps, therefore it is convenient to employ the radix sort on those

time steps where new particles axe introduced and use the merged ordered subsets

sort on the other time steps. The alternative is to treat the introduction of new

particles as an edge effect and handle it separately. Since the new particles can

be introduced in an ordered fashion the algorithm can be modified to handle this

situation by performing an additional merging. In other words, after ordering the

particles in the flow one introduces the new particles and merges these with the

flow particles. The merging now involves onlv two ordered subsets and proceeds

much faster than with N, subsets.

1.4.5 Performance and Extension to Three Dimensions

The performance of the merged ordered subsets algorithm depends to some degree

on No, the number of subsets to be merged. In two dimensions, Ns is usually 9,

and for this case the merged ordered subsets algorithm takes about 45% of the time

of the radix algorithm on the Connection Machine (for a simulation using 2 million

particles and 50,000 cells):

The performance of the algorithm scales linearly with the number of particles

in the simulation. There is also some dependence of performance on Ctot, the

number of cells, since this number determines the size of the merging grid to be

used. However the fraction of work performed by the merging grid is decoupled

from the fraction corresponding to the particles. Recall that the merging grid is

used to perform one scan and one send operation. The time to perform these

operations is dependent on Ctot and is independent of N, the number of particles.

Therefore the algorithm can be characterized as scaling as O(N + Ctot) : O(N),

since Ctot = O(N).

Perhaps most interesting from a theoretical point of view is the time complex-

ity of the algorithm. The algorithm requires a constant number of send and scan

operations to merge a constant number of subsets. We define the eztended scan

model of computation as simply the Exclusive Read Concurrent Write (ERCW)

model but including scan operations as primitive unit-time operations. Note that

we have extended Blelloch's scan model by allowing concurrent writes. This is real-

istic for the Connection Machine since the routing hardware is capable of combining

multiple messages to the same address. We are not allowing concurrent reads as

unit-time primitives since, on the Connection Machine, multiple reads from the



1.4.Sortingby Merging Ordered Subsets 21

same address are buffered and handled iteratively. With the extended scan model,

the time complexity, T, for N parallel processors is O(1). The processor bound,

P, is O(N) therefore the performance bound is PT -- O(N), which is optimal for

sorting over a fixed range of keys.

The distinguishing feature of this algorithm is that it fs deterministic for the set

of cases where it may be applied (see section 4.4). Furthermore, the cases where it

cannot be applied can be determined be[ore carrying out the steps in the algorithm.

Note, however, that the algorithm is restricted to merging O(1) ordered subsets.

Because of this restriction, the algorithm uses only O(1) additional memory per

processor (i.e. the merging grid is of size O(N)), and takes O(1) time to merge. An

unrestricted version of this algorithm (i.e. where we allow O(N) sorted subsets in

the disordered array) would require O(N) additional memory per processor and take

O(N) time to merge. Therefore it does not seem likely that this algorithm can be

generalized to any integer sorting problem, nonetheless it is the only deterministic

algorithm we know that is optimal for sorting in the context of a particle simulation.

We should mention that Rajasekaran and Reif (1989) present an optimal randomized

parallel algorithm for integer sorting. However, this aigorithm is unsuitable for

implementation on the Connection Machine because it requires allocating a variable

amount of memory in each processor. Since the Connection Machine is SIMD,

memory must be allocated uniformly in all processors and the memory requirements

for this algorithm become excessive (the worst case would require O(N2/logN)

total additional memory). Furthermore, since the algorithm divides N records over

N/log N processors, it would require rearrangement of the data mapping in the

particle simulation to make use of this algorithm.

The algorithm has been presented and discussed for a two dimensional flow sim-

ulation. The extension to three dimensions is straightforward but does involve a

loss in performance due to increased communications. In three dimensions there

are at most 125 mutually exclusive sets instead of 25. Again one can expect for the

vast majority of time steps only immediate neighbors will act as sources of particles

in a cell, therefore in three dimensions 27 ordered subsets will usually be identified

as opposed to 9 ordered subsets in two dimensions. The algorithm requires three

scan operations with the particle processors per subset. In two dimensions these

operations account for 55% of the time to rank. In the worst case, in three dimen-

sions that fraction of the algorithm would triple in time so overall the new ranking

algorithm would take about 2.1 times longer than for two dimensions. In addition,

the merging grid would be twice as large in three dimensions and the time spent

by the merging grid would double. However, the performance bound is still O(N)

therefore the algorithm remains optimal in three dimensions although the constant



22 Chapter1. SortingforParticleFlowSimulationontheConnectionMachine

factoris significantly greater than in two dimensions.

1.5 Conclusions

A necessary requirement of a particle simulation is that it have a minimum perfor-

mance bound of O(N) for N particles. This can be achieved on sequential or vector

architectures by using integer sorting algorithms with complexity O(N). However,

these algorithms do not map well to data parallel architectures nor have there been

any data parallel integer sorting algorithms with O(N) performance bound pre-

sented in the literature. This paper analyzes the sorting algorithms currently in

use for particle simulation with sequential and vector architectures, and presents

the first deterministic and optimal integer sorting algorithm for particle simulation

on a data parallel architecture.

Acknowledgment

I would like to thank Professor Donald Baganoff for his invaluable help in the

development of the data parallel particle simulation.



Bibliography

[1] AHO, A.V., HOPCROFT, J.E., _nd ULLMAN, J.D., The DeJion and Anal_t_ia o] Computer

Algo_thms, Addison Wesley Publishing Company, (1974).

[2] BAGANOFF, D. and MCDONALD, J.D., A Colllaion-Seleetlon Rule/or a Particle Simula-

tion Method Suited to Vector Computera, Physics of Flulds A, Vol. 2, No. 7, pp. 1248-1259,

(1990).

[3] BLELLOCH, G., Scana aa Primitive Parallel Ope_tions, Proceedings of 1987 International

Conference on Parallel Processing, University Park, PA, (1987).

[4] BIRD, G.A., Molecular Gas Dynamics, Clarendon Press, Oxford, (1976).

[5] BOYD, I.D., Vectorlzation of a Monte Carlo Simulation Scheme ]or Nonequillb_ium Gas

Dynamics, to appear in Journal of Computational Physics, (1991).

[6] DAGUM, L., Implementation of a Hypersonic Rarefied Flow Particle Simulation on the

Connection Machine, Proceedings of Supercomputing '89, Reno NV, (1989).

[7] DAGUM, L., On the Suitabilitll of the Connection Machine for Direct Particle Simulation,

Ph.D. Thesis , Department of Aeronautics and Astronautics, Stanford University, (1990).

[8] GUTTMAN, I., WILKS, S.S. and HUNTER, J.S. Introductory Engineering Statistics, John

Wiley and Sons, Inc., Toronto, (1971).

[9] KNUTH, D.E., The Art o] Computer Programming: Vol. 3/Sorting and Searching, Addison

Wesley Publishing Company (1973).

[10] MCDONALD, J.D., A Computationallll Efficient Particle Simulation Method Suited to Vec-

tor Computer A_hitectu_es, Ph.D. Thesis, Department of Aeronautics and Astronautics,

Stanford University, (1990).

[11] RAJASEKARAN, S., and REIF, J.H., Optimal and Subloga_ithmlc Time Randomized Par-

allei Sortino Algorithm,, SIAM Journal of Computing, VoL 18, No. 3, pp. 594-607, (1989).

[12] THINKING MACHINES CORPORATION, The Connection Machine System: Parallel In-

struction Set, Thinking Machines Corporation, Cambridge, MA, (1989).


